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Abstract. Magnetic resonance imaging is a leading image modality for many 
clinical applications; however, a significant drawback is the lengthy data acqui-
sition. This motivates the development of methods for reconstruction of sparsely 
sampled image data. One such technique is the Variational Network (VN), a ma-
chine learning method that generalizes traditional iterative reconstruction tech-
niques, learning the regularization term from large amounts of image data. Pre-
viously, with the VN technique, reconstruction of 4-fold accelerated knee images 
was shown to be highly successful.  In this work we extend the VN approach to 
applications beyond knee imaging and evaluate the classic VN and a newly de-
veloped Unet-VN in 5 different anatomical regions. We evaluate the networks 
trained individually for each anatomical area as well as jointly trained with data 
from all anatomical areas. The VN and Unet-VN were trained to reconstruct 4-
fold accelerated images of knees, brains, hips, ankles and shoulders. SSIM was 
calculated to quantitatively evaluate the reconstructed images. Results show that 
the Unet-VN outperforms the classic VN, both quantitatively – in terms of struc-
tural similarity – and qualitatively.  The networks jointly trained with multi-anat-
omy data approach the performance of the individually trained networks and of-
fer the simplicity of a single network for a range of clinical applications which 
has substantial benefit for clinical translation. 
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1 Introduction 

The acquisition of Magnetic Resonance Image (MRI) data is an inherently slow process 
due to the high sampling requirements. Reconstructing images with sparser sampling 
has been, and continues to be, an active area of research in MRI. The major develop-
ments that have contributed to faster imaging are parallel imaging [1-3] and compressed 
sensing [4]. With parallel imaging techniques, the known sensitivities of multiple re-
ceive coils contribute to spatial encoding, and ultimately allow for an image reconstruc-
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tion from sparser sampling. Compressed sensing reconstruction is an extension of tra-
ditional iterative reconstruction methods which estimate images from under-sampled 
data by enforcing consistency with acquired data and applying regularization – a model 
of a-priori information about the reconstruction. In compressed sensing specifically, the 
regularization term enforces sparsity in some transform domain. Effective regulariza-
tion is a key element for solving the under-sampled image reconstruction problem, 
however traditional regularization terms are often an over-simplification of MR image 
structure and offer limited a-priori information.  

Recently, machine learning based approaches for sparsely sampled image recon-
struction were introduced [5-9]; some of these methods use a convolutional neural net-
work to learn the regularization term of an iterative reconstruction [5, 7]. They were 
designed to generalize the concept of compressed sensing and learn the entire recon-
struction procedure for multi-channel MR data. One such method is the Variational 
Network, which has been demonstrated for successful reconstruction of 4-fold acceler-
ated knee images [7, 10], and 3-fold accelerated abdominal images [11].  

The first objective of this work is to extend the VN approach to applications beyond 
knee and abdominal imaging and evaluate the performance of a VN jointly trained with 
data of multiple anatomical regions. The simplicity of a single network for a wide range 
of applications would be a substantial benefit for clinical workflow. The second objec-
tive is to evaluate a newly developed version of the VN which consists of a higher 
model capacity regularizer.  

2 Methods 

2.1 Image Acquisition 

All scans were performed on a clinical 3T system (Siemens Magnetom Skyra), with 
different receive coils ranging from 12 to 26 elements. Fifty fully-sampled anatomical 
images were obtained from 5 anatomical areas, these areas – ranked in order of per-
ceived image SNR – were  brain, knee, hip, ankle, and shoulder.  The study was ap-
proved by our institutional review board. The sequence parameters were as follows:  

Ankle – Sagittal fat-saturated proton-density (PD-FS): TR = 2800 ms, TE = 30 ms, 
turbo factor (TF) = 5, matrix size = 384 x 384, in-plane resolution 0.42 x 0.42 mm2, 
slice thickness = 3.0 mm.  

Brain – Axial T2: TR = 6000 ms, TE= 113 ms, TF = 18, matrix size 384 x 384, in -
plane resolution = 0.57 x 0.57 mm2, slice thickness = 5.0 mm 

Hip – Coronal PD: TR = 3000 ms, TE = 32 ms, TF = 5, matrix size = 320 x 320, in -
plane resolution = 0.5 x 0.5 mm2, slice thickness = 3.0 mm  

Knee – Coronal PD: TR = 2750 ms, TE = 32 ms, TF = 4, matrix size = 320 x320, 
resolution = 0.44 x 0.44 mm2,  slice thickness = 3.0 mm 

Shoulder – Coronal fat-saturated T2: TR = 4540 ms, TE = 54 ms, TF = 12, matrix 
size = 320 x 320, in-plane resolution = 0.44 x 0.44 mm2, slice thickness = 3.0 mm 
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The fully sampled images were then retrospectively under-sampled; the under-sam-
pling was applied such that the center 24 lines of raw k-space data, and every fourth 
line beyond this center region were retained. The remaining k-space lines were set to 
zero. The center 24 lines were used for the ESPIRiT [12] estimation of coil sensitivities. 
 
2.2 Variational network 

Experiments were performed with two versions of the VN. The first is the classic VN, 
described in Hammernik et al. [7] and the second is a version in which the regularizer 
is replaced with a Unet network [13]  (Unet-VN).  
     For this study, we implemented the classic VN in Pytorch, and replaced the IPALM 
optimizer [14], which was traditionally used for VN training, with the Adam optimizer 
[15]. The regularizer in this network is a single convolutional layer with 48 11x11 con-
volutional kernels. The activation functions are a learned set of Gaussian radial basis 
functions, and the model capacity is approximately 131, 000 parameters.  
     In addition to the classic VN network, we also evaluated a Unet-VN network which 
was designed to have much higher model capacity (1.2 million parameters). For this 
architecture, we replace the regularizer in the classic model with a Unet network; oth-
erwise the VN method was unchanged. Our Unet implementation has 3 encoding con-
volutional layers followed by 3 decoding convolutional layers, with 24,48,96,48,24, 
and 12 3x3 convolutional kernels respectively. Max-pooling and bi-linear interpolation 
were used for dimensionality reduction and expansion respectively. We used  ReLU for 
the non-linear activation function, and instance normalization was applied during train-
ing.  

2.3 Network training 

Individual trainings of the VN and Unet-VN were performed with 30 volumes of each 
anatomical region. Ten volumes for each dataset were reserved for a validation set and 
another 10 volumes were reserved for testing. Joint multi-anatomy training was per-
formed with 6 volumes of each of the 5 anatomical regions for a total of 30 training 
cases. The Adam optimizer was used with a batch size of 1 and a learning rate of 3x10-

4. We used Mean squared error as the loss function. Convergence (validation loss stops 
decreasing) for each training was achieved at a different number of epochs ranging from 
60 to 100. Training was performed on a Tesla P100 GPU.  

2.4 Evaluation of reconstructed images 

We tested the trained networks on data from 10 image volumes per anatomical region. 
These cases were not included in the training set. We compare the VN and Unet-VN 
reconstructions with the fully-sampled reference, the zero-filled reconstruction and a 
combined Parallel Imaging, Compressed Sensing reconstruction method based on Total 
Generalized Variation (PI-CS TGV)[16] For all of the PI-CS TGV reconstructions, the 
regularization parameter was set to 4 x10-6 and the number of iterations was 1000. We 
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compared the reconstruction results quantitatively in terms of structural similarity index 
(SSIM)[17]. 

Table 1.  Structural similarity index was calculated for the 10 volumes in each test set; the 
mean and standard deviations are reported.  Each of the 5 test sets were evaluated on all 12 
trained networks. The row labels are the training sets used, and the column labels are the test 

set data.  

  Mean structural similarity of predicted images 

 brain knee ankle hip shoulder 
 

brain 
0.976 
(0.013) 

0.965 
(0.022) 

0.948 
(0.012) 

0.948 
(0.021) 

0.830 
(0.060) 

knee 
0.971 
(0.013) 

0.974 
(0.024) 

0.947 
(0.011) 

0.948 
(0.021) 

0.843 
(0.049) 

ankle 
0.951 
(0.010) 

0.952 
(0.012) 

0.966 
(0.006) 

0.950 
(0.017) 

0.917 
(0.023) 

hip 
0.950 
(0.009) 

0.932 
(0.013) 

0.961 
(0.007) 

0.961 
(0.013) 

0.907 
(0.027) 

shoulder 
0.958 
(0.010) 

0.954 
(0.016) 

0.962 
(0.006) 

0.952 
(0.017) 

0.924 
(0.020) 

all 
0.970 
(0.012) 

0.964 
(0.019) 

0.966 
(0.006) 

0.958 
(0.015) 

0.922 
(0.020) 

 

 
 brain knee ankle hip shoulder 

 
brain 

0.979 
(0.013) 

0.942 
(0.012) 

0.957 
(0.007) 

0.933 
(0.019) 

0.876 
(0.040) 

knee 
0.968 
(0.015) 

0.981 
(0.021) 

0.956 
(0.007) 

0.945 
(0.020) 

0.890 
(0.031) 

ankle 
0.951 
(0.013) 

0.866 
(0.021) 

0.970 
(0.005) 

0.941 
(0.018) 

0.917 
(0.024) 

hip 
0.899 
(0.025) 

0.893 
(0.023) 

0.899 
(0.025) 

0.965 
(0.012) 

0.888 
(0.026) 

shoulder 
0.925 
(0.023) 

0.909 
(0.011) 

0.950 
(0.013) 

0.939 
(0.020) 

0.929 
(0.019) 

all 
0.976 
(0.014) 

0.969 
(0.017) 

0.967 
(0.005) 

0.960 
(0.015) 

0.926 
(0.019) 

 

3 Results 

The SSIM results for the VN and Unet-VN reconstructed images are reported in Table 
1. We report the SSIM for all combinations of training and test data. For all anatomical 
regions, the highest SSIM is achieved with the individual, anatomy-specific, trained 
network. In these cases where the training and test anatomy are matched, the Unet-VN 
outperforms the classic VN. Image reconstruction results for the matched training and 
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test sets are shown in Figure 1. The VN and Unet-VN both outperform the PI-CS TGV 
method.  

 

Fig. 1. Brain, knee, ankle, hip and shoulder reconstructions with 4-fold acceleration. The 
learned reconstructions appear sharper and have less residual artefacts than the PI-CS TGV     

reconstructions. The displayed SSIM values were calculated for the presented slices. 

 
When the training data and test data are not matched we observe an increase in re-

sidual artefacts in the reconstructed image and a decrease in SSIM. This is demonstrated 
in Figure 2 where we show knee images reconstructed with the VN individually trained 
with knee, brain, ankle and hip images. Another general trend that we observe when 
the training and test data is not matched is over-smoothing in the reconstructed images 
when training SNR < test SNR. When the opposite is true – training SNR > test SNR, 
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noise amplification is observed. This effect is demonstrated in Figure 3. When the train-
ing and test data are not matched, the classic VN outperforms the Unet-VN for the 
majority of the training set/ test set combinations (16/20).   

The performance of the joint multi-anatomy trained networks approached that of the 
individual trainings for each anatomy and the Unet -VN consistently outperformed the 
classic VN. Image results for the multi-anatomy training are shown in Figure 4. 

Fig. 2. Coronal PD weighted knee scan with 4-fold acceleration. The top row depicts the recon-
structed results for the classic VN trained with knee, brain, ankle and hip images. The bottom 

row shows the difference images compared to the fully sampled reference. 

 

Fig. 3. Sagittal PD-FS ankle scan with 4-fold acceleration. Reconstruction results for the VN 
trained with ankle, brain (high SNR), and shoulder (low SNR). These results illustrate the trend 
that when training SNR > test SNR, the images suffer from noise amplification, and when train-

ing SNR < test SNR, the images appear over-smoothed.  
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Fig. 4. Brain, knee, ankle, hip and shoulder reconstructions with 4-fold acceleration. The joint 
multi-anatomy trained networks result in similar reconstructed image quality as the individually 
trained networks. The Unet-VN matches or exceeds the classic VN for individual anatomy and 

multi-anatomy training 
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4 Discussion 

The variational network outperformed the PI-CS TGV algorithm for reconstructions of 
4-fold accelerated knee, brain, hip, ankle and shoulder images. The Unet-VN which has 
a higher model capacity regularizer than the classic VN, outperforms the classic VN 
for individual trainings when the test and training data are matched. In addition to 
higher model capacity, the Unet regularizer – with multiple convolutional layers – has 
a larger perceptive field than the classic single-layer regularizer. This may also contrib-
ute to the improved performance. The training time of the Unet-VN is approximately 
25% longer than the training time of the classic VN. The Unet-VN network does not 
perform as well in most cases when the image being reconstructed is not represented in 
the training set, suggesting that the Unet-VN does not generalize as well to anatomical 
regions not previously seen by the network.  
     A specific trend is observed when there is a mismatch in the SNR of the training set 
and the test set; when the SNR of the training data is lower than the SNR of the test 
data, we observe over-smoothing in the reconstructed images. When the SNR of the 
training data is higher than the SNR of the test data, we see noise amplification in the 
reconstructed images. These findings are in agreement with a previous study that made 
a similar observation with fat-saturated (lower snr) and non – fat saturated (higher snr) 
knee images [10].  
     The networks that were jointly trained with multi-anatomy data have similar perfor-
mance to those trained with a single anatomy, and again the Unet-VN outperforms the 
classic VN. A single network that can be used for many different clinical applications 
is not only beneficial for clinical workflow but also presents the opportunity for much 
larger training sets. In this study we used 30 images for joint multi-anatomy training in 
order to make fair comparisons with individual trainings; this approach does not take 
advantage of the 5x more training data that were available.   
 

5 Conclusion 

In this work, the classic VN and a newly developed Unet-VN were demonstrated for 4-
fold acceleration of ankle, brain, hip and shoulder images and out-performed the PI-CS 
approach. The Unet-VN, with a higher model capacity regularizer, outperformed the 
classic VN for individual trainings as well as for joint multi-anatomy trainings. The 
networks jointly trained with multi-anatomy data had similar performance to those 
trained for a specific anatomy. Our findings suggest that the VN approach is a promis-
ing clinical tool for accelerated MR image reconstruction.  
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