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Abstract—The reconstruction of high quality images from low-
dose X-ray CT scans data is a topic of significant technical
and clinical relevance. In this paper, we develop learning-based
variational networks (VNs) to reconstruct low-dose 3D helical
CT data. We consider two dose reduction methods: (1) x-ray
tube current reduction and (2) x-ray beam interruption also
known as SparseCT. In the first case we train a VN to denoise
the current-reduced reconstruction to account for the smaller
signal-to-noise ratio, whereas, in the second case the VNs learn
reconstruction schemes that suppress undersampling artifacts.
We use 4 clinical abdominal 3D scans to train VNs for 4-fold
dose reduction and compare against state-of-the-art model-based
denoising and sparse reconstruction methods on a 5th clinical
abdominal test scan. The proposed VNs improve performance
over state-of-the-art iterative model-based denoising and sparse
reconstruction techniques. VNs for SparseCT compare favorably
to VNs for current reduction, particularly for reconstruction of
small low-contrast features.

Index Terms—CT image reconstruction, SparseCT, low-dose
CT, compressed sensing, machine learning, variational networks

I. INTRODUCTION

The increasing utilization of CT scanners in clinical imaging
examinations, has triggered the need to reduce the radiation
dose, particularly for recurrent studies. One of the most com-
mon approaches is to reduce the tube current, e.g., tube current
modulation [1], or lower tube currents in conjunction with
iterative model-based denoising methods [2]. These techniques
have been successfully integrated in commercial scanners, but
they only offer moderate radiation dose reductions of 30-
40% in practice, due to compromises between denoising and
smoothing.

The radiation dose can also be mitigated without reducing
the tube current by decreasing the number of X-rays that
penetrate a patient during a CT scan. The compressed sensing
(CS) theory [3] supports this approach, since CT images are
compressible in a transform domain and reducing the num-
ber of X-ray projections results in small additive incoherent
streaking artifacts. A simple way to omit projections is to
perform angular undersampling, i.e., just acquire projections
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for a fraction of the angular views, as proposed by [4]. The
SparseCT method [5] extended this idea by blocking a subset
of X-rays in an incoherent way across the angular and slice
dimensions, which divides the overall undersampling along
multiple dimensions and thus increases the perfromance of
CS for reconstruction of the whole volume.

Recent low-dose CT reconstruction algorithms for low-
current and/or undersampled data are typically model-based
iterative methods that incorporate prior knowledge to increase
image quality. These prior models are typically rather simple
and model just a small subset of the CT image statistics, e.g.,
the popular total variation (TV) prior enforces sparsity in the
image gradient domain. In addition, the balance between a
regularizing prior term and a data fidelity term has to be empir-
ically tuned to generate suitable reconstructions. In accelerated
magnetic resonance imaging, deep learning was introduced
to overcome this empirical tuning and to learn image mod-
els that are tailored towards medical imaging, demonstrating
significant improvements over standard compressed sensing
algorithms [6]. Likewise, recent work on deep learning for
low-dose CT demonstrated improved performance compared
to standard denoising and sparse reconstructions [7]–[9]. The
U-net-like structures of [8] and [9] as well as the residual en-
coding network of [7] learn a mapping from low-dose filtered
back-projection images to reference images that encodes and
decodes the relevant information, in contrast to the step-wise
refinement structure of [6].

In this work, we propose to learn variational networks for
low-dose CT data acquired with tube current reduction and
SparseCT. We train the VNs on four clinical abdominal data
sets and evaluate the reconstruction quality of the proposed
VNs on a test data set and compare it to state-of-the-art model-
based reconstructions.

II. MODEL-BASED CT RECONSTRUCTION

The process of acquiring CT data of a volume u 2
RM⇥N⇥D can be formalized as

d = Au+ n , (1)

where d 2 RP is the post-log measured data of P X-ray pro-
jections. The random variable n models the effects of quantum
and electronic noise and is assumed to be Gaussian due to pre-
processing. The linear forward operator A : RM⇥N⇥D 7! RP

implements the mapping from the volume to the measurement
data that is defined by the scanner geometry. For SparseCT A
additionally implements the undersampling pattern.
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Fig. 1. (a) Illustration of the VN for CT and the variational units (VU) for
(b) CT denoising and (c) CT reconstruction.

For a given noisy and possibly undersampled CT scan data
d, the inverse problem of recovering the volume u is usually
defined by a variational minimization problem such as

min
u

F (u) := �kruk1 +
1

2
kAu� dk22 . (2)

Here the scalar � � 0 is used to balance the solution between
smoothness, which is enforced by the total variation (TV), i.e.,
`1-norm of the image gradients, and data fidelity. A suitable
algorithm to solve (2) is the primal-dual approach with line
search [11], since it requires just a view evaluations of the
operator A that are computationally expensive.

III. VARIATIONAL NETWORKS FOR CT

Typical optimization schemes for variational imaging mod-
els, such as (2), can be implemented using convolutional net-
works. This observation, inspired [12] to train all parameters of
a gradient descent scheme for variational image reconstruction
models, i. e., analysis operators, potential functions, weighting
and step sizes, from data. Variational networks (VNs) [13]
connect this scheme, convolutional neural networks and vari-
ational minimization. To adapt VNs for CT, we apply fields-
of-experts-type priors [14] of the form

Rc(u) = h1,�c(Kcu;Wc)i (3)

that are parameterized by a convolution operator Kc :
RM⇥N⇥D 7! RM⇥N⇥D⇥Nk , which stacks Nk 3D convo-
lutions Ki

c : RM⇥N⇥D 7! RM⇥N⇥D, and corresponding
potential functions �i

c(·;wi
c) : R 7! R. These functions are

point-wisely applied to the corresponding filter response and
are parameterized by the weights wi

c 2 RNw . For the sake
of simplicity, we group all these functions into �c(·,Wc) and
their parameters (wi

c)
Nk
i=1 into Wc.

We use this prior model to construct a variational energy
that fits into the VN framework [13] and define it as

F{TCR,SCT} : =
CX

c=1

f c
{TCR,SCT}(u) (4)

f c
{TCR,SCT}(u) = Rc(u) +

�c

2
D{TCR,SCT}(u) , (5)

where the data term D{TCR,SCT}(u) is adapted according to
the dose-reduction approach. In the case of tube current reduc-

tion (TCR) we learn to denoise initial low-dose reconstruction,
hence we use a simple `2-norm denoising data term

DTCR(u) = ku� u0k22 . (6)

In the case of SparseCT (SCT) we use the forward operator A
and the undersampled data d to enforce data consistency to the
undersampled data and facilitate the reconstruction scheme

DSCT (u) = kAu� dk22 . (7)

For both low-dose VNs we use a cyclic component selection
function, i.e., c(t) = mod (t, C), and follow [13] to define
a variational unit (VU) as

ut = ut�1 �rf c(t)
{TCR,SCT}(ut�1) , (8)

where the gradients of the energy components are given by

rf c
TCR(u) = K⇤

c�
0
c(Kcu;Wc) + �c(u� u0) (9)

rf c
SCT (u) = K⇤

c�
0
c(Kcu;Wc) + �cA

>(Au� d) . (10)

The adjoint operator of Kc is denoted as K⇤
c and it is defined

as a convolution with all 180 rotated filter kernels followed by
a point-wise summation. Figure 1 illustrates the computation
outline of a VN for low-dose CT. The input u0 is transformed
into the output uT by applying T steps of the form (8).

A. Training of VNs for CT
To train a VN for a set of training samples (us

0, u
s
tar)

S
s=1,

we minimize the problem

min
✓2T

1

2

SX

s=1

kbs � (us
T � us

tar)k22 , (11)

where ✓ = {Wc,Kc,�c, c = 1 . . . C} holds all the parameters
of the VN. As [13], we constrain the parameters to an admis-
sible set T that enforces �c � 0 and that each convolution
filter has zero-mean and its `2-norm lies on the unit ball. We
are only interested in reconstructing the central scan regions
because of the missing ray density at border regions. Thus
we apply a binary mask bs 2 {0, 1}M⇥N⇥D that selects
the 9 central slices where utar 2 [0, 1] and � indicates a
point-wise multiplication. Note that we rescaled the images
such that the HU interval [�200, 280] is mapped to [0, 1]
to ease training and account for the desired HU range. We
solve the constrained training problem (11) by using the Adam
optimizer [15] extended by an additional back projection step
onto T after each gradient step. We perform 1000 gradient
steps using the default moments of the Adam optimizer and a
step size of 1⇥ 10�2.

B. Experimental Setup
For the reconstruction of low-dose CT data we apply

T = C = 10 variational units and use Nk = 32 convolution
filters of size 11 ⇥ 11 ⇥ 3 and their corresponding activation
functions are parameterized by Nw = 31 Gaussian radial
basis functions. We scaled the volumes for both training and
test data such that the interesting Hounsfield unit interval
[�200, 280] is mapped onto [0, 1] to ease the training of the
parameters. We use 8 filter-function-pairs that are defined
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TABLE I
TRAINING AND TEST DATA SETS

reference tube current tube voltage radiation dose gantry rotations
mAs kV CTDIvol -

train

240 120 21.19 16
240 120 19.01 26
240 120 22.26 19
350 120 29.63 20

test 320 100 12.90 17

on the interval [�4, 4] to regularized the entire HU range,
whereas, the remaining 24 filter-function-pairs are defined on
[�1, 1] to account for the details in the desired tissue interval.
In total 126,090 parameters were trained for each VN.

We used four clinical 3D in vivo abdominal CT scans of
different patients of a Siemens Definition AS scanner. Table I
shows acquisition properties of the train and test scans. In
order to fit the CT data reconstruction onto a single GPU, we
split the data of each CT scan after a full gantry rotation and
ended up with 81 batches for training and 17 test samples.
For every sample we reconstructed an imaged volume of size
384 ⇥ 384 ⇥ 30. The target volumes us

tar were computed by
solving (2) with � = 1 using [11] on the full-dose CT data.
Likewise, the initial reconstructions us

0 were generated with
� = 1⇥ 10�9 using either simulated fully-sampled low-dose
data [16] or binary subsampled full-dose data for SCT. We
apply the same W1S4 undersampling pattern as in [17] for a
4-fold dose reduction.

IV. RESULTS

We used the test data set to evaluate the reconstruction
quality of the learned VNs for both TCR and SCT for 4-
fold radiation dose reduction. Table II depicts a quantitative
evaluation of the root mean squared error (RSME) of the
proposed VNs and state-of-the-art model-based denoising and
reconstruction approaches. In Fig. 2, we qualitatively compare
representative abdominal slices reconstructed by the proposed
VNs to the full-dose reference, SAFIRE [2] and TV recon-
struction.

In the case of tube current reduction, the proposed VN for
TCR outperforms SAFIRE [2] in terms of RMSE and also in
reconstruction quality. The VN presents a higher noise reduc-
tion of the imaged volume, while keeping the fine structure
of the vessels in the liver. The resulting images are slightly
smoothed though. Since SAFIRE applies an edge-enhancing
kernel to highlight edges in the reconstructions, we removed
the skin region from the binary mask b in the evaluation
process to perform a fair comparison. Fig. 3 depicts the
difference to a corresponding reference slice for the considered
methods. Clearly, SAFIRE yields higher differences at edge
regions but also the remaining regions are rather noisy.

In the case of SparseCT, the trained VN yields a lower
RMSE than the TV model-based reconstruction using 4-fold
undersampled test data. The VN for SCT removes the aliasing
artifacts better than the TV reconstruction, while maintaining
the fine vessels in the liver. Moreover, the reconstructions of
the VN for SCT present more details than those of the VN
for TCR and are also sharper, highlighting the advantages
of SparseCT over tube current reduction for the same dose

TABLE II
QUANTITATIVE COMPARISON OF THE DIFFERENT 1/4-DOSE CT METHODS

BY MEANS OF RMSE TO THE TARGET utar , MEASURED IN HU.

SAFIRE [2] TV VN TCR VN SCT
17.75± 2.11 8.84± 1.20 7.91± 0.90 7.72± 0.82

reduction factor. In addition, the reconstructions of a VN for
SCT using 6-fold undersampling are shown on the right in
Fig. 2. Despite the increased dose reduction, the VN for SCT is
able to reconstruct the fine details and remove aliasing artifacts
and yield reconstructions with a similar quality.

V. CONCLUSION

In this work, we extended variational networks to recon-
struct CT volumes from low-dose data. We learned VNs for
two popular radiation dose reduction methods, namely tube
current reduction and SparseCT. The proposed VNs yield
reconstructions that outperform state-of-the-art denoising and
sparse reconstruction methods for low-dose CT. The VNs
present a higher noise and artifact reduction, while fine details
such as vessels are properly reconstructed. The learned recon-
structions for undersampled data (SCT) show more details and
are sharper than the learned denoising scheme for reduced-
current data (TCR). Our experiments suggest that the proposed
VNs increase the image quality for a given radiation dose
and would enable higher radiation dose reductions. Future
work includes the extension of the binary undersampling
masks of SparseCT to more realistic undersamling masks as
in [18]. Additionally, we work on speeding up the training and
reconstruction process by means of ordered-subsets.
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(a) full-dose (b) SAFIRE (c) TV (d) TCR (e) SCT (f) SCT

Fig. 2. Representative slices for reconstruction of in vivo abdominal test data for low-dose CT. The purple boxes report RMSE values. (a) Target: TV (� = 1)
reconstruction of the fully-sampled high dose data, (b) SAFIRE [2] using 1/4 dose, (c) TV (� = 1.75) reconstruction using 4-fold undersampling, (d) VN
for TCR reconstruction using T = 10 steps and 1/4 dose, (e) VN for SCT reconstruction using T = 10 steps and 4-fold undersampling, and (f) VN for
SCT reconstruction using T = 10 steps and 6-fold undersampling.

(a) SAFIRE (b) TV (c) TCR (d) SCT (e) SCT

Fig. 3. Error to the reference reconstruction utar for the first two slices presented in Fig. 2. (a) SAFIRE [2] using 1/4 dose, (b) TV (� = 1.75) reconstruction
using 4-fold undersampling, (c) VN for TCR reconstruction using T = 10 steps and 1/4 dose, (d) VN for SCT reconstruction using T = 10 steps and 4-fold
undersampling, and (e) VN for SCT reconstruction using T = 10 steps and 6-fold undersampling. Note that we mapped the HU interval [-150, 150] to [0,
1] to ease visualization.
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