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Abstract—Low-dose X-ray computed tomography (CT) is a
major area of research due to the diagnostic capability of
CT counterbalanced by the risk of radiation exposure. The
standard method for reducing the dose is to decrease the tube
current, but this negatively impacts image quality at high dose
reduction factors due to photon starvation effects. We investigate
an alternative paradigm, called SparseCT, in which a multi-slit
collimator (MSC) is placed between the source and the patient.
Interrupting the X-ray beam in this way reduces radiation dose
to the patient and produces undersampled data from which the
image can be estimated using sparse image reconstruction tech-
niques. However, the MSC introduces a number of new consid-
erations, including penumbra effects that require wider slits and
more spacing between slits in order to optimize dose efficiency
and beam separation. These design choices reduce incoherence
in the undersampling scheme and affect the performance of
standard edge-preserving/sparsity-promoting regularizers. Here,
we simulate these effects in the ideal setting where penumbra
effects do not increase the noise in the sinogram. For modest
4-fold retrospective undersampling factors, we observe a slight
degradation in an abdominal scan between incoherent-optimal
and practical MSC designs for SparseCT. In the future, we plan
to use the simulation to inform MSC design prior to fabrication.

I. INTRODUCTION

X-ray computed tomography (CT) is a powerful imaging
modality that allows efficient and accurate diagnosis of dis-
ease with minimal scanning time. However, CT acquisition
utilizes ionizing radiation, which has raised concerns about
possible radiation risks. Although in many clinical situations
the diagnostic benefit of X-ray CT far outweighs the risk posed
by ionizing radiation, the undesirability of ionizing radiation
has prompted extensive research into reducing the dose while
preserving image quality (e.g., [1]).

The current state-of-the-art approach for reducing ionizing
radiation is to decrease the time product of the tube current
(measured in milli-Ampere seconds, mAs), which increases
noise in the projection data. Reconstruction then proceeds with
different statistical models for pre- or post-log sinogram data,
usually with regularization. The regularization typically takes
on the form of an edge-preserving roughness penalty, similar
to Total Variation. A drawback of this approach is that photon
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starvation effects begin to dominate at high mAs reduction
levels. An alternative approach is view-based undersampling
(e.g., [2]), where certain angular projections are omitted
(analogous to one subset of the canonical ordered subsets
algorithm). When combined with edge-preserving or sparsity
promoting regularization, view-based subsampling can lead to
9-fold undersampling factors [2], but practical implementation
would require being able to quickly turn the source on and off,
a feature not available on present CT scanners.

A practical subsampling approach is to use a multi-slit
collimator (MSC) to block part of the X-ray flux before it
hits the patient as is done in SparseCT [3]. This exposes
a subset of detector rows rather than collecting all rows as
in the conventional approach. As the gantry rotates around
the patient, the MSC would be jittered to expose different
rows of the detector, or the X-ray focal spot itself could be
moved (a feature present on current X-ray CT systems). A
potential benefit of this approach is increased incoherence
of the sampling pattern relative to view-based subsampling,
a property beneficial for sparsity-promoting regularizers [4].
However, use of an MSC requires further consideration of
penumbra effects associated with the non-zero size of the X-
ray source [5]. These effects can lead to decrease in the X-ray
profile prior to hitting the patient, degrading the SNR of the
sinogram. To maintain X-ray fluence, practical MSC design
favors larger slit widths, which in turn reduce incoherence.

We explore the maximum performance when using MSC
subsampling with standard sparsity-promoting and edge-
preserving regularization. We compare the performance of
three different classic of regularizers (Total Variation, 3D
wavelets, and finite differences with a hyperbola potential)
with maximal incoherence and practical collimator designs.

II. METHODS

A. Sampling Pattern

Recently, a multi-slit collimator (MSC) was proposed in
SparseCT [3] to undersample the projection data by partially
blocking the beam as a practical solution to CT undersampling.
However, the beam penumbra caused by the finite size of the
focal spot can reduce the benefits of undersampling since it
reduces the fluence [5]. As such, in MSC design one must
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balance small slit widths, which are better for incoherence,
with the attenuation due to penumbra effects.

Here we examine two configurations for 4-fold undersam-
pling based on the geometry of the Siemens SOMATOM
Definition Flash scanner: a W1S4 undersampling, where one
out of every four detector rows is open, and W4S16 under-
sampling, where four rows out of every 16 are open. Both of
these methods give a similar dose to the patient, but based on
internal simulations, the W1S4 undersampling pattern has a
dose efficiency of about one third that of the W4S16 pattern
[5]. We would like to identify the magnitude of the coherence
drop-off in this sampling regime for a standard set of sparsity-
promoting regularizers, so we neglect to consider the effects
of decreased X-ray fluence on changing the noise statistics
in our retrospectively undersampled experiments. We plan to
build more accurate simulations for these effects in the future.

B. Reconstruction Formulation

We consider model-based reconstruction methods that esti-
mate the image by solving an optimization problem:

x̂ = argmin
x

1

2
‖y −Ax‖22 + βR(x), (1)

where R(x) is an edge-preserving/sparsity-promoting regular-
izer. We choose to ignore the standard least-squares weighting
for CT due to preprocessing steps applied by the Siemens
scanner to our data. We are interested in different forms for
the regularizer, R(x), in the context where the paradigm of
dose-reduction is changed from the high-noise setting of low
tube currents to our setting where we have subsampled data.
In principle, with subsampled data and high incoherence, the
regularizer should be sparsity-promoting [4].

The most straightforward formulation for an edge-
preserving, sparsity-promoting regularizer, R(x), is to use
Total Variation:

R(x) = ‖Cx‖1 , (2)

where C is a finite-differencing matrix. This promotes sparsity,
which complies with compressed sensing theory. However, this
has the potential drawback of introducing undesirable features
such as a salt-and-pepper noise texture at high regularization
levels [1].

It can be difficult to achieve very high compression ratios
needed for compressed sensing from Total Variation. Based
on results in MRI [6], 3D wavelets can give much higher
compression ratios than Total Variation. A wavelet-based re-
construction paradigm would use

R(x) = ‖Wx‖1 , (3)

where W is a wavelet transform. There are many possible
wavelet transforms to choose from. One type that leads to an
efficient algorithm is to use Daubechies D4 wavelets.

Another alternative to Total Variation that circumvents TV
artifacts is to use a regularizer that doesn’t promote sparsity

for small differences by replacing the absolute value function
in (2) with a general potential function:

R(x) =
K
∑

k=1

ψ ([Cx]
k
) , (4)

where k is the kth output of Cx. There are many choices for
ψ(t). We choose the hyperbola, which has been used in other
CT applications [2]. The hyperbola function is

ψ(t) = δ2
[

√

1 + (t/δ)2 − 1
]

, (5)

where the δ parameter mediates the tradeoff between the
edge-preserving, TV-like properties of the regularizer and the
quadratic-like properties of the regularizer.

C. Algorithm Considerations

Each of the above regularizers requires a different algorithm
for minimization purposes. All the algorithms used here are
of the majorize-minimize class. First, we note the following
useful fact from De Pierro [7]:

Df = diag
{

abs
(

A
T
)

abs (A) 1
}

# A
T
A, (6)

which implies that Df constructed in this manner is a ma-
jorizer for ATA. Using the method of separable quadratic
surrogates [8], we can then design a surrogate and use it in an
optimization algorithm. We design our algorithms without the
classic ordered subsets acceleration since our data are already
undersampled.

Noting that Df # ATA, the Total Variation BARISTA
algorithm [8] (which is itself a FISTA algorithm [9]) can be
applied directly to (1) when R(x) is in the Total Variation
form. For the case of orthogonal Daubechies D4 wavelets, we
choose to convert the problem into the synthesis form [8], and
use FISTA with a Lipschitz constant of max(Df ) [9]. For the
case of the hyperbola potential function, we use the algorithm
of Kim without ordered subsets acceration [10].

III. EXPERIMENTS

A. Experimental setup

We simulated the proposed MSC sampling scheme at a 4-
fold reduction factor by using a retrospectively-undersampled
abdominal scan acquired on a Siemens SOMATOM Definition
Flash scanner at a volume CT Dose Index (CTDIvol) of 9.27
mGy. We used a central 736 × 64 × 4006 (detector channels
× detector rows × projections) section of the helical sinogram
to reconstruct a 768 × 768 × 32 image volume (later cropped
to 512 × 512 × 32) at 0.66 mm × 0.66 mm × 3 mm
resolution (340 mm × 340 mm × 96 mm field of view). The
4-fold reduction factor is modest, but we noticed based on
the initialization in Fig. 2 that the images were already quite
noisy at this level. All images shown are from slice 20 of the
reconstructed image volume. We used two different sampling
patterns. The first had one slit open out of every four rows
(W1S4), while the second had four slits open out of every 16
rows (W4S16). Fig. 1 shows the two sampling patterns used
in the numerical experiments.
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(a) (b)

Fig. 1. MSC sampling patterns used in simulation experiments, where 32
rows of the first 32 channels of a 736×64 detector are shown. (a) shows the
W1S4 sampling pattern, while (b) shows the W4S16 sampling pattern.

Each sampling pattern was used on all three regularizers
at different regularization strengths, although the images we
show are for weaker regularization strengths due to artifacts
present with stronger regularization. We chose the regular-
ization parameters based on the visual appeal of the images.
All reconstructed images were compared to an unregularized
reference image shown in Fig. 2 that was calculated from fully-
sampled data. Fig. 3 shows results for all three regularizers in
both sampling schemes, while Fig. 4 shows difference images
between the results and the reference image in Fig. 2.

(a) (b)

Fig. 2. (a) A reference image calculated from fully-sampled data. The image
is shown in a 40 ± 200 HU abdominal window. (b) A quarter-dose image
used to initialize the algorithms.

For these modest undersampling levels, we observed that
the main degradation to the initialization images were noise-
like artifacts that arise from the incoherence of the sampling
pattern. All methods exhibited errors in the location of the
edges, with the hyperbola method giving the greatest edge
fidelity. The TV images exhibited standard TV features in the
reconstructions with flattening of the noise profiles and the
introduction of salt-and-pepper noise at higher regularization
strengths (results not shown). The wavelet reconstructions
performed similar to the TV ones, but introduced artifacts at an
earlier stage (results not shown). The 3D orthogonal wavelets
also performed more poorly with the W4S16 sampling pattern.
Subjectively, we found the hyperbola images blurrier than the

others, but we aim to examine this more carefully in the future.
In general, all finite difference reconstructions performed

similarly between the W1S4 subsampling scheme and the
more practical W4S16. This suggests that in modest un-
dersampling regimes, incoherence reduction from a W1S4
ideal sampling pattern to a W4S16 practical pattern is not
significant for finite-difference-based schemes. We aim to
examine other MSC designs in the future that facilitate more
dramatic sampling factor reductions.

IV. CONCLUSION

We performed experiments to test a sparsity-based X-ray
CT paradigm with retrospective sinogram undersampling to
simulate sampling patterns achievable by an MSC design
that considers penumbra effects. Our results show that with
modest undersampling levels, performance with a practical
collimator that considers penumbra effects is slightly less than
that that of incoherence-maximal sinogram undersampling in
the ideal noise setting. In general, we observed that 3D wavelet
reconstructions were artifact-prone in this setting at modest
regularization levels. We observed edge location artifacts with
the Total Variation regularizer, and the hyperbola introduced
some blurriness. In the future we aim to extend these results
to more accurately simulate noise in the subsampling case
and to build a physical collimator and further test the design
principles with measured experimental data. We also plan to
explore more advanced regularizer design using principles that
incorporate deep learning principles.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Results of reconstructions. (a), (b), and (c) show the results for Total Variation, orthogonal 3D wavelets, and the hyperbola potential, respectively for
the W1S4 sampling pattern. (d), (e), and (f) show the results for Total Variation, orthogonal 3D wavelets, and the hyperbola potential, respectively for the
W4S16 sampling pattern. All images are shown with a 40± 200 HU abdominal window.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Absolute difference images for the different reconstructions. (a), (b), and (c) show the difference images for Total Variation, orthogonal 3D wavelets,
respectively. (d), (e), and (f) show the results for Total Variation, orthogonal 3D wavelets, and the hyperbola potential, respectively. Images are shown with a
50± 50 HU viewing window.
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