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Introduction: Combinations of parallel MRI and compressed sensing have been proposed for reducing MRI scan times.1,2 

BARISTA3 is a fast algorithm for parallel MRI and compressed sensing due to its consideration of coupling between the 

sensitivity maps and the spatial localization property of the wavelet transform, but it remains untested in the non-Cartesian 

setting. This abstract extends this approach to non-Cartesian trajectories by considering coupling between the frequency 

localization property of the wavelet transform and the density compensation inherent in non-Cartesian sampling patterns. The 

cost function associated with parallel MRI and compressed sensing has the form, Ψ(𝑥) =  
1

2
‖𝑦 − 𝐴𝑥‖2

2 + 𝛽‖𝑅𝑥‖1, where 𝐴 

is a SENSE system matrix and 𝑅 is an undecimated wavelet transform. 𝐴 = 𝐹𝑆 where 𝐹 is a non-Cartesian Fourier operator 

and 𝑆 is a matrix that involves the sensitivity maps. The BARISTA approach would upper bound 𝐹′𝐹 with 𝐿𝐼, where 𝐿 is the 

maximum eigenvalue of 𝐹′𝐹. This bound is loose in the non-Cartesian setting due to the high density of samples at low 

frequencies. To accelerate convergence, we bound 𝐹′𝐹 more tightly with 𝑀𝑓, a circulant matrix that is related to the density 

compensation function of 𝐹′𝐹. This has been explored previously, but previous works used a stochastic, moving-target cost 

function with orthogonal wavelets that had weaker convergence guarantees.4 We build on advantages of previous approaches 

and derive a BARISTA-type algorithm with varying substeps for each frequency subband of the wavelet transform. The new 

algorithm is observed to accelerate convergence by a factor of 2-3 over standard FISTA5 in numerical experiments. 

Methods: The matrix, 𝐹′𝐹, can be upper bounded with a circulant matrix, 𝑀𝑓, by first computing 𝐷𝑓 = diag(𝑄𝐹𝑒0), where 

𝑄 is a DFT matrix and 𝑒0 is an impulse response. We then increase the minimum entry in 𝐷𝑓 until 𝑀𝑓 = 𝑄−1𝐷𝑓𝑄 is a majorizer 

of 𝐹′𝐹 as determined via power iteration.6 We found empirically that this matrix is also a majorizer for 𝐴′𝐴 when the sensitivity 

maps are calculated with a square root sum of squares normalization. Once 𝑀𝑓 is calculated, we then need to determine 𝐷𝑅 

such that 𝐷𝑅 ≽ 𝑅𝑀𝑓
−1𝑅𝑇 . 𝐷𝑅 is a matrix that governs step sizes for regularization.3 We first note that 𝑅𝑇 = [𝑅1

𝑇 … 𝑅𝐵
𝑇] for an 

undecimated wavelet transform with 𝐵 subbands. For each subband, we have 𝑅𝑏 = 𝑄−1Λ𝑏𝑄. Inserting this into 

𝑅𝑀𝑓
−1𝑅𝑇reveals that we can apply Geršgorin’s Theorem to build 𝐷𝑅 = diag(𝑑𝑅,𝑏𝐼𝑏), where 𝐼𝑏  is an identity matrix of the size 

corresponding to the 𝑏th subband and 𝑑𝑅,𝑏 = max
n

(∑ |𝜆𝑛,𝑏𝜆𝑛,𝑝
∗ /𝑑𝑛,𝑓|𝐵

𝑝=1 ) , where 𝜆𝑛,𝑏 is the 𝑛th entry in Λ𝑏  and 𝑑𝑛,𝑓 is the 

𝑛th entry in 𝐷𝑓. Within BARISTA, this gives the analysis denoising step of 𝑞(𝑗+1) = 𝑃𝑃𝑀(𝑣(𝑗) − 𝛽−1𝐷𝑅
−1𝑅𝑥(𝑘,𝑗+1)) where 

𝑥(𝑘,𝑗+1) = 𝑐(𝑘) − 𝛽𝑀𝑓
−1𝑅𝑇𝑣(𝑗) and 𝑐(𝑘) = 𝑥(𝑘) − 𝑀𝑓

−1𝐴′(𝐴𝑥(𝑘) − 𝑦). We compared the convergence speed of this new 

algorithm to that of FISTA5 in a radial sampling scheme where 

30 of the full 401 radial spokes with 8 coils were used for 

reconstruction. 𝑅 was an undecimated Haar wavelet transform. 

Results: We plot 𝜉(𝑘) =
‖𝑥(𝑘)−𝑥(∞)‖

‖𝑥(∞)‖
, the norm-residual to 

convergence, vs. time in all figures. 𝑥(∞) was calculated by 

running many thousands of iterations. Figure 1 shows 𝑥(∞) and 

𝑥(5) (image after 5 iterations) for each algorithm in these 

numerical experiments. Figure 2 compares the convergence 

speed of the algorithms in the undecimated Haar wavelet case, 

showing the 2-3 factor increase in convergence speed. 

Discussion: We have demonstrated the utility of upper 

bounding non-Cartesian Hessian matrices in the SENSE parallel 

MRI setting with circulant majorizers. The circulant majorizers 

have frequency responses similar to that of the standard density 

compensation function. We further showed that this property 

can be exploited in the setting where the regularizing matrix, 

𝑅, is an undecimated Haar wavelet transform. This gives 

subband-dependent stepsizes that can be computed without 

power iterations as soon as the circulant majorizer 𝑀𝑓 is 

determined. In the future we plan to examine strategies for 

computing tighter circulant majorizers and guarantees that they 

upper bound 𝐴′𝐴. 
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Figure 1: (A) The converged 𝑥(∞) for the numerical 

experiments. (B) 𝑥(5) with the proposed method. (C) 𝑥(5) 

with FISTA, which is blurred without the proposed method. 

Figure 2: Convergence speed result comparing the 

proposed Non-Cartesian Majorizer to FISTA. 
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